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ABSTRACT

Sea surface temperature (SST), a crucial indicator widely ap-
plied in marine-related fields, is often observed by exten-
sive cloud cover in satellite observations, resulting in signif-
icant data gaps. While deep learning approaches offer so-
lutions for reconstructing SST images using ample histori-
cal data, the majority of current methods overlook the con-
text constraints inherent in oceanographic data, such as se-
quential correlations and global consistency. This oversight
leads to non-robust completion results in the presence of ex-
tensive data gaps. This paper proposes a robust SST re-
construction network guided by sequential correlations and
global consistency, designed to handle the task of extensive
missing data recovery in SST under large-scale cloud cover,
namely CCG RRN. Extensive comparison experiments and
visualization results affirm the effectiveness and robustness
of CCG RRN compared with the State-Of-The-Art (SOTA)
methods on the public NSOAS SST datasets.

Index Terms— Sea surface temperature, deep neural net-
work, context constraints

1. INTRODUCTION

SST serves as a crucial indicator in marine-related industries
such as fisheries[1] and meteorology[2]. Despite real-time
access to global SST images via meteorological satellites, the
presence of extensive cloud cover often leads to significant
data gaps in the observed SST image. Although traditional
interpolation-based methods[3, 4, 5, 6] can reconstruct SST
using valid pixels in the SST image, the result is significantly
constrained when facing large-scale data gaps. Another cate-
gory extensively employed for forecasting is data assimilation
methods[7, 8], which effectively simulate accurate values uti-
lizing numerical models. However, they are constrained by
the provision of initial and boundary fields, leading to a sub-
stantial consumption of time costs. The nonlinear capabilities
of deep neural networks (DNN) have led to widespread adop-
tion in SST image reconstruction, these works employ the
Auto-encoder[9], the U-net[10], and Generative Adversarial
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Fig. 1: The global consistency and sequential correlation in SSTs.

Networks (GAN)[11]. However, these DNN-based methods
often ignore the inherent context characteristics of oceano-
graphic data, such as the sequential correlations and global
consistency as shown in Fig. 1, causing non-robust. There-
fore, this paper introduces a Context Constraints-Guided
Reconstruction Robust Network (CCG RRN), which incor-
porates a U-net-based global encoder for obtaining a global
consistency embedding from a short-term average SST im-
age. It also utilizes a ConvGRU-based sequence Modeling
module for extracting a Sequential correlation embedding
from sequential images. A designed decoder fuses these em-
beddings, reconstructing a cloud-free SST image. Our con-
tributions include: 1) We propose a robust method, namely
CCG RRN, for sea surface temperature imputation, capa-
ble of effectively completing data under extensive missing
conditions. 2) We introduce a ConvGRU-based Sequential
Modeling module and design a fusing module for integrating
sequential correlation and global consistency (SEGC DFD),
which leads to a rational and novel incorporation of contex-
tual information. 3) Sufficient experiments on the NSOAS
SST dataset validate the effectiveness and robustness of our
proposal against other SOTA methods.

2. RELATED WORK

Traditional SST reconstruction methods are interpolation-
based methods including optimal interpolation[3], lin-
ear interpolation[4], lanczos interpolation[5], and spline
interpolation[6], Data Interpolating Empirical Orthogonal
Functions (DINEOF)[12], etc. However, these interpolation
methods typically rely on effective regions for reconstruction,
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Fig. 2: The main framework of proposed CCG RRN, concluding: 1) Global Consistency Extracting Module (GCEM), which takes the average SST image, corrupted SST image and
its mask as inputs and outputs the global consistency embedding by a Global-Encoder; 2) Sequential correlation Extracting Module (SCEM), which takes sequential SST images as
inputs and outputs a Sequential correlation embedding by a Sequence-Encoder and a ConvGRU-based module (ConvGRU SM); 3) Sequential Evolution under Global Consistency
Inpainting Module (SEGCIM), which takes the global consistency embedding and Sequential correlation embedding as inputs and outputs the reconstructed SST image by a proposed
Deeply Fusing Decoder (SEGC DFD). Finally, CCG RRN applies a discriminator to supervise the reconstructed SST image with the ground truth.

which neglects the utilization of historical data and results in
limitations on the quality of imputation.

With the development of DNN, the powerful non-linear
fitting capability it enables them to learn the distribution pat-
terns of historical data, numerous DNN-based methods have
been employed in this task [13, 14, 15, 16], such as [13] pro-
poses a ”coarse to fine” inpainting network for SST recon-
struction based on GAN. [14] designs a new loss function
to reconstruct the corrupted SST image based on DCGAN.
AIN[15] proposes a GAN-based anomaly inpainting network
for SST image reconstruction. DINCAE[16] achieves SST
reconstruction through the SST anomalies and their expected
error variance based on U-net.

3. METHOD

3.1. framework

Fig. 2 shows the main framework of the proposed CCG RRN.
We suppose that the corrupted SST image is obtained at date
t, which belongs to week W , and then we apply sequential
SST images earlier than date t but within W . In this paper,
we simply select the images of three consecutive days before
the date t as the sequential SST images. By inputting the
corrupted SST image, denotes as SSTcorrup, an average SST
image of W , denotes as SSTaverage, and the sequential SST
images, denotes as SST[t−3,t−2,t−1], our goal is to fill the
missing area of SSTcorrup and make it to meet the global
consistency and the temporal pattern.

The CCG RRN mainly consists of three modules: 1) The
Global Consistency Extracting Module (GCEM), which takes
in the SSTcorrup and SSTaverage as inputs and outputs a
global consistency embedding through a global encoder, de-
noted as Embglo; 2) The sequential correlation Extracting
Module (SCEM), which takes the SST[t−3,t−2,t−1] and cor-
responding masks as inputs and outputs a Sequential corre-
lation embedding through a Sequence-Encoder and a pro-

posed ConvGRU-based Sequence Modeling module (Con-
vGRU SM), denoted as Embseq; 3) The Sequential Evolution
under Global Consistency Inpainting Module (SEGCIM),
which takes the Embglo and the Embseq as inputs and out-
puts a reconstructed SST image SSTrecons through a deeply
fusing decoder. Finally, we apply a discriminator to supervise
the SSTrecons with ground truth as similar in GAN.

3.2. Global consistency extracting module

This module aims to extract the global consistency embed-
ding based on SSTcorrup and SSTaverage by firstly filter-
ing those invalid areas of SSTcorrup and SSTaverage to
effectively obtain the embedding of the effective area of
SSTcorrup as follows:

SST corrup = SST corrup ⊙Maskcorrup, (1)

where ⊙ is an element-wise multiplication and Maskcorrup
is a binary cloud mask of SSTcorrup that is 0 if the pixel is
covered, otherwise to 0, the SSTaverage similarly. And then
GCEM applies a U-net-based global encoder with four layers
of the same structure to down-sample the inputs SSTcorrup

and SSTaverage to a global consistency embedding Embglo,
which represents the global stability of a week. Specifically,
the global encoder consists of four layers and each layer con-
cludes two gated convolution layers with kernel size set as
3, note that we replace the vanilla convolution with the gated
convolution to avoid the visual artifacts[18] and a max-pool
layer with kernel size of 2.

3.3. Sequential correlation Extracting Module

This module aims to extract the Sequential correlation
embedding from SST[t−3,t−2,t−1] by first subtracting the
SSTaverage from the SST[t−3,t−2,t−1] to obtain the sequen-
tial bias images, i.e., the daily deviation, with filtering out
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Table 1: The comparison results for SST image reconstruction using five methods on the NSOAS dataset. We use the Root Mean Square Error (RMSE) and R-squared (R2) as
metrics to evaluate the reconstruction results. The best and second-best Root Mean Squared Errors (RMSE) and R-squared (R2) are in Bold and underline under different cloud
cover ratios with different Noise/Signal ratios (N/S).

N/S Cover Ratio AIN[15] CF DGM[17] DINEOF[12] DINCAE[16] Ours
RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

0.1

8% 0.1588 0.9444 0.2857 0.7982 0.1987 0.9441 0.1624 0.8787 0.1539 0.9619
25% 0.1761 0.8579 0.2518 0.2773 0.1727 0.8579 0.1870 0.7776 0.1624 0.8615
46% 0.1878 0.7237 0.2532 0.2031 0.1515 0.7528 0.1714 0.5942 0.1549 0.7455
68% 0.2003 0.5742 0.2646 0.1961 0.1912 0.0393 0.2018 0.3348 0.1432 0.6526

0.2

8% 0.1642 0.9581 0.2863 0.7426 0.1984 0.9532 0.1882 0.8651 0.1630 0.9664
25% 0.1891 0.8359 0.2541 0.4556 0.1725 0.8602 0.1658 0.7899 0.1682 0.8606
46% 0.1786 0.6724 0.2087 0.1821 0.1513 0.7308 0.1882 0.6013 0.1384 0.7536
68% 0.2172 0.4514 0.2835 0.1951 0.1914 0.2108 0.1982 0.3609 0.1403 0.5802

0.3

8% 0.1789 0.9531 0.2908 0.8252 0.1983 0.9533 0.1930 0.8726 0.1603 0.9561
25% 0.1810 0.7959 0.2572 0.3038 0.1726 0.8318 0.2175 0.7471 0.1580 0.8283
46% 0.1970 0.6580 0.2098 0.3441 0.1517 0.6566 0.2204 0.4534 0.1424 0.6761
68% 0.2285 0.4679 0.2652 0.0891 0.1912 0.0392 0.2068 0.3762 0.1617 0.4773

invalid areas as (1). Then, SCEM applies a sequence en-
coder with the same structure as the global encoder to encoder
filtered SST[t−3,t−2,t−1] to three embeddings, i.e., Embt−3,
Embt−2, Embt−1 of time point t − 3, t − 2, t − 1. Inspired
by the ability of ConvGRU[19] to address temporal issues in
3D data, we introduce a ConvGRU-based Sequence Model-
ing module (ConvGRU SM) with three ConvGRU in tandem,
i.e., ConvGRU3, ConvGRU2, ConvGRU1 in Fig. 2, to ob-
tain the sequential correlation embedding as follows:

h3−i+1 = ConvGRU i (Embt−i, h3−i) , i = 3, 2, 1 , (2)

where h is the hidden state, h0 is initialized randomly. Af-
ter that, the ConvGRU1 outputs h3, which is regarded as the
sequential correlation embedding Embseq , including the cor-
rectness of the time series and the trend of numerical fluctua-
tion.

3.4. Sequential evolution under global consistency in-
painting module

Based on the Embglo and the Embseq obtained from above,
this module aims to up-sampling and obtain the Cloud-free
SSTrecons by taking the two information into a designed
Sequential Evolution under Global Consistency Deeply Fus-
ing Decoder (SEGC DFD), which includes two streams for
up-sampling the Embseq and Embglo, respectively, i.e., up-
stream and down-stream as shown in Fig. 2. Specifically, the
up-stream consists of four layers and each layer concludes a
skip-connection, an up-sampling layer, and two convolution
layers with kernel size of 2. Note that the skip-connection
is achieved based on the sequence encoder in SCEM. The
down-stream concludes the same structure of three layers as
the up-stream but without skip-connection. To better fuse the
two information between the two streams, we apply a fusion
scheme f(·) as follows:

f(A,B) = α •K ⊙A+ (1− α) •K ⊙B, (3)
K = sigmoid(A⊙B), (4)

where α are hyper-parameters, A and B represent the output
of each layer in down and up-stream, respectively. Finally,
the SEGC DFD outputs the reconstructed cloud-free SST im-
age SSTrecons, and a discriminator is used to supervise the
SSTrecons and the ground truth. Here, reconstruction loss
Lrec and adversarial loss Ladv as follow:

Lrec = λave
recL

ave
rec + λcorrup

rec Lcorrup
rec , (5)

Lave
rec =

1

N

N∑
1

∥(ŷ−SST average)⊙Maskaverage∥2, (6)

where λave
rec and λcorrup

rec are hyper-parameters, ∥·∥2 is the
L2 norm, and N represents the number of pixels in ŷ, i.e.,
SST recons. Maskaverage are defined as the same in (1). The
Lcorrup
rec similarly.

Ladv = − (log (1−D (SST recons)) + logD(y)) , (7)

where D represents the discriminator and y is the ground
truth. Then, we define the total loss function as follows:

Ltotal = λrecLrec + λadvLadv, (8)

where λrec and λadv are hyperparameters.

4. EXPERIMENTS

4.1. Datasets

In this study, we utilized NSOAS’s publicly available SST
level-4 products, covering January 2022 to April 2023, with
no data gaps. Each pixel represents a 5-km2 region in the
South China Sea, focusing on latitudes 23°N to 26°N and
longitudes 110°E to 113°E. To create corrupted SST datasets
for training and validation, we normalized the data to [-1, 1].
We introduced standard normal distribution noise to simulate
various Noise/Signal ratios (N/S) as following DINEOF[12].
Additionally, binary cloud masks with varying cover ratios
were incorporated from the WHU cloud dataset[20]. The
training spanned January to December 2022, with January to
April 2023 used as the test set.
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(a) Ground Truth (b) Corrupted SST (c) AIN[15] (d) CF DGM[17] (e) DINEOF[12] (f) DINCAE[16] (g) Ours

Fig. 3: Comparative analysis of the visualization results from five methods on the NSOAS dataset. The x- and y-axes represents longitude (°E) and latitude (°N), respectively. (a)
Ground truth SST image. (b) Cloud-obscured images, the first through fourth rows are missing ratios 8%, 25%, 46%, and 68%, respectively, but N/S is all 0.1. (c) Results from
AIN. (d) Results from CF DGM. (e) Results from DINEOF. (f) Results from DINCAE. (g) Results from our proposal, i.e., CCG RRN.

4.2. Implementation details

For training our model, we set the image training size to 64 x
64 and used the Adam optimizer. The learning rate is set as
0.0001. The cloud cover rate is set to [8%, 25%, 46%, 68%]
and the N/S ratio is set to [0.1, 0.2, 0.3]. The parameters
of that optimizer, β1 and β2, are set to 0.5 and 0.99 and the
hyperparameters were set as α= 0.9, λave

rec =0.8, λcorrup
rec =0.2,

λrec=1, λadv=10.

4.3. Comparison to prior State-of-the-art-methods

In this section, we use the Root Mean Squared Errors
(RMSE) and R-squared (R2) evaluate the performance of
our proposal compared with some SOTA methods as fol-
lows: 1) AIN[15]: a ”coarse to fine” model to reconstruct
SST image by predicting the weekly SST image and then
added to an anomaly image from an anomaly inpainting net-
work. 2) CF DGM[17]: a GAN-based model for inpainting
remote sensing images by first obtaining the rough estima-
tion of missing areas and then refining the details based on
a spatial semantic attention mechanism; 3) DINEOF[12]: a
classic adaptive EOF-based decomposition method for SST
reconstruction by estimate the error size of reconstructed data
without any prior information; 4) DINCAE[16]: a novel U-
net-based method to reconstruct SST by taking SSTs and ex-
pected error variance as inputs. The comparison results as
shown in Table 1, we can observe that CCG RRN, consis-
tently outperforms others, especially with a 68% coverage ra-
tio, yielding the best RMSE and R2. In terms of RMSE, at an
N/S of 0.2, CCG RRN’s RMSE reduction is 26.7% greater
than DINEOF, the second-best method. In terms of R2, simi-

larly at an N/S of 0.2, CCG RRN surpasses AIN, the second-
best method, by 28.5%. Notably, the DINEOF experiences a
substantial decline in R2 values under all three N/S ratios as
the missing data coverage increases to 68%. This decline can
be attributed to the fact that DINEOF relies on valid SST data
for restoration, which directly impacts the completion effec-
tiveness. The comparative analysis of the visualization of the
results is shown in Fig. 3.

5. CONCLUSIONS

Conventional DDN-based methods for sea surface tempera-
ture reconstruction utilize historical data to learn data distri-
butions for image completion. However, most works overlook
the context constraints inherent in marine science SST data.
In this paper, based on the sequential correlations and global
consistency, we proposed a context constraints-guided robust
reconstruction network, i.e., CCG RRN, to handle extensive
data gaps caused by clouds. Through extensive comparative
experiments on the public NSOAS dataset against state-of-
the-art methods, CCG RRN demonstrates robustness and ef-
fectiveness across various cloud cover ratios. Particularly, our
approach outperforms SOTAs in scenarios with large-scale
data gaps. We will focus on the modeling of sequential corre-
lations over longer periods in the future.
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